

Systemic AAV Gene Therapy with CNS-Targeted Engineered Capsids Achieves Significant GCase Activity Increases in the Primate Brain to Support the Potential Treatment of GBA-PD

May 10th, 2024

Nicholas Flytzanis, PhD Chief Research and Innovation Officer

Disclosures

• Nicholas Flytzanis is a co-founder and employee of Capsida Biotherapeutics

Capsida Biotherapeutics

Foundation in capsid engineering with focus on building a new class of targeted, non-invasive gene therapies

Pipeline of wholly owned and partnered programs in rare and more common Neurological and Ophthalmology diseases Fully integrated capabilities: capsid engineering, cargo optimization, discovery, preclinical research, process development, manufacturing, and clinical development

terilGARD

Capsida Addresses CNS Challenges Through our Engineered Gene Therapies

	CNS Challenges	Capsida Solutions		
	Wild Type AAV9 (IV Delivery)	Capsida Engineered Capsid (IV Delivery)		
	NHP Cortex	NHP Cortex		
Neuronal Transduction	Limited ability to cross biological barriers, esp. BBB - < 1% transduction with wild type AAV9 IV	Capsida engineered capsids cross BBB with high levels of neuronal transduction – up to 70% neurons		
Safety Concerns	Safety concerns / liver toxicity	Enabling lower dosing and ~4000x difference in CNS to liver targeting vs wild type AAV9		
Patient Populations	Traditional gene therapies primarily for ultra-rare/rare diseases	Access to more common diseases across all ages		
Risks	Direct injection into the brain or CSF is invasive with significant risks	Targeted IV admin increases effectiveness and reduces risks		

Gen 5 Capsids Yield Breakthrough Expression Across the CNS and Significant Liver De-Targeting vs WT AAV9

IV Delivery

IV Delivery

~4000X difference in CNS expression vs liver targeting with Capsida's breakthrough capsids relative to wtAAV9

=

Lower efficacious doses Wider Therapeutic Index

Pipeline for Rare and Common Diseases Across All Ages

Capsida Wholly Owned Programs

Disease / Target	Cargo	Discovery	IND-Enabling	Clinical
Genetic Epilepsy due to STXBP1 mutations	Gene Supplementation	CAP-002		
Parkinson's disease associated with GBA mutations	Gene Supplementation	САР-003		
Undisclosed	Gene Supplementation	CAP-004		

Partnered Programs			
Disease / Target	Cargo	Partner	Co/Co Option
Neurological Diseases & Disorders (3)	Undisclosed	abbvie	One Program, U.S. Profit Share
Neurological Diseases & Disorders	Undisclosed	Prevail Attain Const Education	One Program, U.S. Margin Share
Ophthalmology Diseases & Disorders (3)	Undisclosed	abbvie	
Friedreich's Ataxia	Editing	CR ISPR THEADEDTICS	CRISPR owned, Capsida Co/Co Option

Parkinson's Disease Associated with GBA Mutations

PD-GBA1

Mutations in GBA result in decreased GCase activity (25-30% in symptomatic PD-GBA1 patients) and lysosomal dysfunction

Addressing motor and non-motor symptoms require **widespread** supplementation of enzyme activity, including in key brain regions of **substantia nigra, frontal cortex, putamen**

¹Smith and Schapira 2022; ²Parkinson's Foundation Created with BioRender.com

Second most common neurodegenerative disease

Motor Symptoms (e.g., resting tremor, rigidity, slowness of movement) and non-motor symptoms (e.g., cognitive decline, psychiatric)

No approved disease-modifying therapies

Potential for earlier age of onset, more frequent cognitive impairment, more rapid progression vs idiopathic PD¹

	Protein Levels	GCase Enzyme Activity	
,	59% of neurons transduced in substantia nigra	45% increase over wildtype in substantia nigra	
	Up to 70% in other brain regions	Average brain-wide increase of 36 %	

Potential to be first IV delivered gene therapy

Nearly **1M** prevalent PD population in US²

Up to **15%** of PD patients have mutations in the GBA gene¹

In Vivo Target Engagement in GBA1 LOF Mouse Model

AAV Treatment Correlates with Dose-dependent Increases in GBA1 Protein and Gcase Activity in the Brain as Well as Significantly Reduced Glusph Levels

CAP-003 IV Results In Widespread Expression of GBA1-HA In Brain Areas Impacted by Neurodegeneration

Capsid: Gen 5; Dose: 1.25E13 vg/kg Cargo: hGBA1-HA; In-life: 6 weeks Species/Age: N = 3 cynomolgus macaques, ~42mo

Frontal

Cortex

Caudate

Nucleus

Putamen Thalamus Substantia

Nigra

Sampling Across Cortical Layers Shows Neuronal Transduction up to 50% Following IV Delivery

An average **neuronal transduction of 30%** was determined by quantifying the full depth of the cortex (pia to white matter)

Representative image to the left highlights the **range of neuronal transduction** observed **throughout the cortical layers**

Neuronal transduction observed in all layers of the NHP cortex, with the highest transduction levels observed in Layers 4-5 at 50%

Representative image below highlights **nearly 100% transduction of motor neurons** within Layer 5 of the cortex

Capsid: Gen 5; Dose: 1.25E13 vg/kg Cargo: hGBA1-HA; In-life: 6 weeks Species/Age: N = 3 cynomolgus macaques/ ~42mo

96-97%

CAP-003 Expression Extends to Spinal Cord and is Markedly De-Targeted from the Liver and Well Tolerated Following IV Delivery

CAP-003 is **well tolerated** with no clinical pathology or immunogenicity findings. **Unremarkable histopathology** across the body, including **liver** and **DRGs**.

2 mm

CAP-003 IV Results in Substantial GCase Activity throughout the NHP Brain

IV delivered development candidate shows a significant increase in GCase activity in NHPs in majority of individual key brain regions, with a **45% increase** in the substantia nigra

Estimates of GCase activity increases within transduced neurons reach **82**% over wild-type levels in the substantia nigra and up to **102**% **across the whole brain**

These GCase increases are expected to normalize enzyme activity levels and provide clinically meaningful benefit for patients with PD-GBA1

Capsida Manufacturability Assessment: CAP-003 Scales Well in Suspension to Meet Quantity and Quality for the Clinic

Characteristic	Method	Criteria	CAP-003 (2L)	CAP-003 (50L)
Productivity in crude lysate	ddPCR	Good: 1-3E+11 vg/ml Better: 3-5E+11 vg/ml Best: >5E+11 vg/ml	3.45E11	3.35E11
% Full, out of bioreactor	DLS + UV or vg/cp titer	Good: >5% Full Better: >15% Full Best: >30% Full	8%	8%
Binding to AAV9 resin	Affinity step, ddPCR	Recovery >50%, by ddPCR	56%	75%
Host cell DNA (encap), DS	qPCR	<1E3 ng per 1E13 VG	526	779
Aggregation, DS	SEC-FLD	Aggregation < 10%	3.3	1.5
Packaging, DS	Alkaline agarose gel or electrophoresis method	Dominant band at predicted size	Dominant band as expected	Dominant band as expected
VP1:VP2:VP3 ratio, DS	CE-SDS	Comparable to reference	1.3:1:5.8	1.1:1:4.8
Overall Yield, DS	ddPCR	DS: Vg/L of cell culture	8.20E13	1.5E14

Overall yield is in line with wild type AAV9

Summary

Capsida's CAP-003 candidate efficiently crosses the blood-brain barrier in NHPs after intravenous injection and achieves breakthrough levels of transduction throughout the NHP brain while significantly de-targeting the liver compared to AAV9

GCase enzyme activity is raised significantly throughout the therapeutically relevant areas of the NHP brain, exceeding levels needed to restore GCase function in patients with PD-GBA1

This efficacy can be achieved at doses as low as 1.25E13 vg/kg that are well tolerated without yielding any overt clinical pathology or immunogenicity and unremarkable histopathology findings across the body, including liver and DRGs

Capsida's PD-GBA1 program is currently in IND-enabling studies with the goal of supporting initiation of clinical trials in the first half of 2025

Acknowledgements

Capsida's PD-GBA1 Team

Kimberly McDowell

Reed Ressler

Alexander Armendariz

Maeve Flynn

Lubov Grigoryeva

Brandon Wheeler

Amanda Woodbury

Swati Tole

Hari Acharya

Paul Denis

Pasha Tchourilov

Other Capsida Oral Presentations

AAV Gene Therapy Corrects Neurological Phenotypes with Clinically Relevant Doses in a Mouse Model of STXBP1-Related Development and Epileptic Encephalopathy; **Wu Chen (BCM) - Abs # 38**

Directed Evolution of AAV9 Libraries in Non-Human Primates Identifies a Capsid Family with Enhanced Central Nervous System Tropism and Liver De-Targeting Following Systemic Delivery; Xiaojing Shi - Abs # 122

Capsida Poster Presentations

CAP-002: Systemic AAV Gene Therapy with Next Generation Capsida for Treatment of STXBP1 Encephalopathy; **Allison Knoll - Abs # 504**

Directed Evolution of AAV2 Libraries Yields Capsids with Improved Performance in the Central Nervous System and Cross-species Translatability; **Sean Gross- Abs # 992**

Characterization of engineered AAV capsids from different HEK293 cell culture fractions, crude lysate versus cell pellet material; **Heidy Morales – Abs # 529**

Alternative Plasmid Designs Including Two Plasmid Transfection Systems for Improved Production and Packaging of Engineered AAV Capsids; Lysa-Anne Volpe – Abs # 530

Separation of Empty and Full Engineered Adeno-Associated Virus Capsids Using a Weak Anion Exchanger; **Varun Gejji – Abs # 1038**

Our Pipeline is Making the Impossible Possible

🖂 info@capsida.com

1300 Rancho Conejo Blvd Thousand Oaks, California

