

Directed Evolution of AAV9 Libraries in Non-Human Primates Identifies a Capsid Family with Enhanced Central Nervous System Tropism and Liver De-Targeting Following Systemic Delivery

May 8th, 2024 **Xiaojing Shi, PhD** Principal Scientist

Disclosure

• Xiaojing Shi is a full-time employee of Capsida Biotherapeutics.

Capsida Biotherapeutics

Foundation in capsid engineering with focus on building a new class of targeted, non-invasive gene therapies

Pipeline of wholly owned and partnered programs in rare and more common Neurological and Ophthalmology diseases

Fully integrated capabilities: capsid engineering, cargo optimization, discovery, preclinical research, process development, manufacturing, and clinical development

terilGARD

NHP Driven Targeted Gene Therapy Engineering Platform

High-throughput Automated Process Identifies Capsids that Target Desired Tissues and Cell Types While De-targeting Undesired Tissues

Automated Biologically Driven NHP Screening Combined with Analysis of Murine and Human Cells In Vitro Sequence and Structure based analysis

Library Design and Screening Strategy

Gen5 Capsid Family was Identified to be Enriched in Brain and De-target Liver

Variant score considers enrichment values and consistency in performance across codon replicates, tissue replicates and animals

Reference capsid (AAV9) was titrated at multiple doses in the library

Each box represents the average of 3 codon replicates for a variant and the average across four animals

Enrichment (Tissue Cpm / Viral Cpm)

Gen5 Capsids Demonstrate Improved RNA Expression Across CNS Regions

Platform and Process Improvements Led to Continuous Advancements of Variants Across Generations

• Each box represents the average of 3 barcodes for a variant and the average across four animals

Log10 +1 Enrichment (Tissue Cpm / Viral Cpm)

Gen 5 Capsids Yield Breakthrough Transduction Across The CNS And Significant Liver De-Targeting vs WT AAV9

Liver De-targeting

Up to ~16x decrease in Liver De-targeting

Gen 5 capsids are well tolerated with no clinical pathology or immunogenicity findings

Unremarkable histopathology across the body, including liver and DRGs

Gen5 Capsid Achieves Widespread Protein Expression Across the Brain Following IV Delivery in NHPs

Capsid: Gen 5; Dose: 1.25E13 vg/kg Cargo: HA-GOI; In-life: 6 weeks Species/Age: N = 3 cynomolgus macaques, ~42mo

Gen5 Capsid Results in Extensive Transduction of NHP Motor Neurons

Cargo: HA-GOI, Dose: 1.25E13 vg/kg, In-life: 6 weeks, Species: Cynomolgus macaques, Age: ~42mo

Summary

Demonstrated **success in engineering next-generation AAV capsids** for specific, widespread CNS expression via Capsida's NHP-driven targeted gene therapy platform

Breakthrough CNS transduction and **effective liver de-targeting** achieved with Gen 5 capsids in NHPs following systemic administration

Up to 70% neuron transduction (over 85% motor neurons) achieved at low doses with Gen 5 capsids

Advancement of wholly owned and partnered CNS-targeted gene therapy programs enabled by Gen 5 capsids, including treatments for genetic epilepsy (STXBP1 mutations) and Parkinson's Disease (GBA mutations)

Efficient **production of Gen 5 capsids at yields comparable to wild type AAV9**, enabled by Capsida's suspension manufacturing platform

Acknowledgements

Capsid Engineering

Nick Goeden	Michelle Ling		
Sean Gross	Caden Holloway		
Brandon Wheeler	RJ Blackburn		
David Goertsen	Austin Kidder		
Yixi Wang	Viviana Gradinaru		

Reem Elteriefi

Preclinical Research

Susan Catalano	Kimberly McDowell	
Nicholas Flytzanis	Reed Ressler	
Lubov Grigoryeva	Christopher Octeau Hector Espinosa	
Cheng-Hsin Liu		
Tyler Ardrey		

High-Throughput Screening Platform		Vector Production		
Mark Chin	Marsela Jorgolli		Pasha Tchourilov	Kyle Douglas
Zach Mason	Fan Wu		Sara Jabalameli	Vernon Benedicto
Han Young Lim	Jeremy Patrick		Jordyn Wheeler	Gordon Gibson
Nicole Grepo	Matthew Frias			
Edwin Lamas				

Christian Mercado

Other Capsida Presentations

Oral Presentations

- AAV Gene Therapy Corrects Neurological Phenotypes with Clinically Relevant Doses in a Mouse Model of STXBP1-Related Development and Epileptic Encephalopathy; Abs # 38 – Wu Chen (BCM) – Tues May 7, 3:00-3:15 PM
- Systemic AAV Gene Therapy with CNS-Targeted Engineered Capsids Achieves Significant GCase Activity Increases in the Primate Brain to Support the Potential Treatment of GBA-PD; Abs # 274 – Nicholas Flytzanis – Fri May 10, 3:00 - 3:15 PM

Poster Presentations

- CAP-002: Systemic AAV Gene Therapy with Next Generation Capsida for Treatment of STXBP1 Encephalopathy; Abs # 504

 Allison Knoll Wed, May 8
- Directed Evolution of AAV2 Libraries Yields Capsids with Improved Performance in the Central Nervous System and Cross-species Translatability; Abs # 992 – Sean Gross – Thurs, May 9
- Alternative Plasmid Designs Including Two Plasmid Transfection Systems for Improved Production and Packaging of Engineered AAV Capsids; Abs # 530 – Lysa-Anne Volpe – Wed, May 8
- Characterization of engineered AAV capsids from different HEK293 cell culture fractions, crude lysate versus cell pellet material; Abs # 529 – Heidy Morales – Wed, May 8
- Separation of Empty and Full Engineered Adeno-Associated Virus Capsids Using a Weak Anion Exchanger; Abs # 1038 Varun Gejji – Thurs, May 9

Our Pipeline is Making the Impossible Possible

🖂 info@capsida.com

1300 Rancho Conejo Blvd Thousand Oaks, California

www.capsida.com