

Systemic AAV Gene Therapy Using a CNS-Targeted Engineered Capsid Significantly Increases GCase Activity to Support the Potential Treatment of PD-GBA

Reed Ressler, PhD

AAN 2025 Annual Meeting April 9, 2025

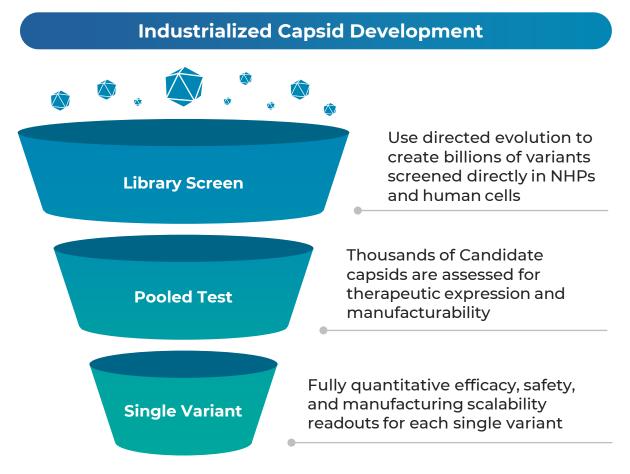
Solving the Challenges of Gen-1 Genetic Medicines

Starting in CNS and Ophthalmology with applicability across all therapeutic areas

	CNS Challenges	Capsida Solutions
Crossing the BBB	Limited ability to cross BBB; < 1% neuronal transduction	>70% of neurons transduced in NHPs
Safety Concerns	Liver and dorsal root ganglia (DRG) toxicity	>16x liver & >50x DRG detargeting; lower dosing
Patient Populations	Narrow therapeutic index (TI) limits to ultra-rare/rare diseases	Broader TI = more common diseases across ages
Route of Administration	Direct injection to brain or CSF causes significant risks and inconsistent expression	IV limits risks and allows consistent expression
	IV delivery increases risk of off-target effects (esp. liver) and triggering immune response	Well-tolerated safety profile with no adverse histopathological findings

Capsida Has Developed Best-In-Class Platform

Leverages rigorous drug development principles and high-throughput automation to identify capsids that meet Target Capsid Profile (TCP) for each indication


Engineered Capsids that Meet or Exceed TCP

Evolved from engineering in mice to NHPs and screening in human cells to improve human translatability

Industrialized process built around customized robotics platform

Engineer capsids to meet TCP criteria including:

- Targeted tissues and cell type specificity
- High expression levels
- >10x off-target tissue detargeting
- · Superior immunogenicity profile
- Superior manufacturability profile

Advance development candidates that meet or exceed TCP for each indication

Parkinson's Disease Associated with GBA Mutations

CAP-003 potential to be best-in-class disease modifying therapy

PD-GBA

Mutations in GBA result in decreased GCase activity (25-30% in symptomatic PD-GBA patients) and lysosomal dysfunction

Up to 15% of PD patients have mutations in the GBA gene¹

	Limitations of Investigational Therapies	CAP-003 Differentiators
Protein Levels	 Low neuronal transduction, especially in substantia nigra 	+ Up to 70% of neurons transduced (57% in substantia nigra)
GCase Elevation	 Limited GCase elevation 	 GCase increases > levels needed to treat PD-GBA; reaching >200% on average across key brain regions
Delivery	 Direct injection to the brain or CSF is invasive and results in inconsistent expression 	 IV delivery limits risks and allows for broad coverage across the CNS
Safety	 Liver and DRG toxicity risks 	 No adverse histopathology findings, including liver and DRGs

Disease Manifestations

PD is second most common neurodegenerative disease

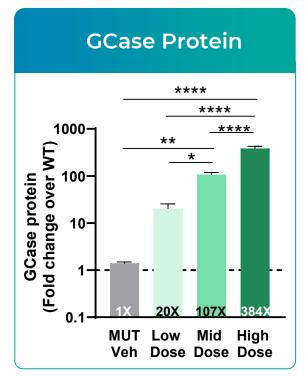
Motor Symptoms (e.g., resting tremor, rigidity, slowness of movement) and non-motor symptoms (e.g., cognitive decline, psychiatric)

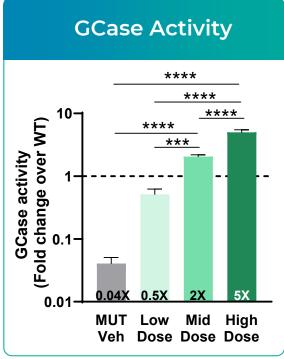
Unmet Need

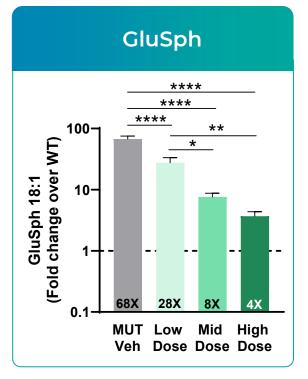
No approved disease-modifying therapies

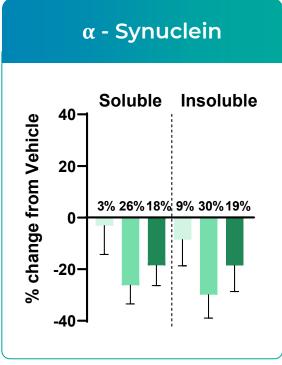
Potential for earlier age of onset, more frequent cognitive impairment, more rapid progression vs idiopathic PD¹

Impact

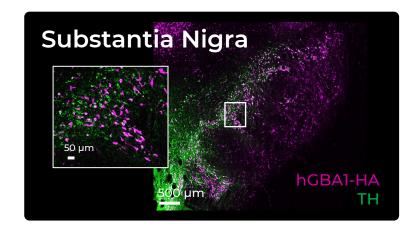

Potential to be first IV delivered gene therapy

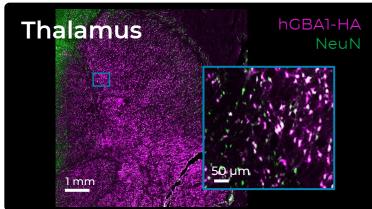

Up to **150K** prevalent PD-GBA population in US² and up to **180K** in the EU³

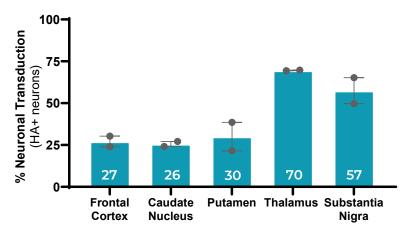

¹Smith and Schapira 2022; ²Parkinson's Foundation; ³Deuschl G The Lancet Public Health 2020

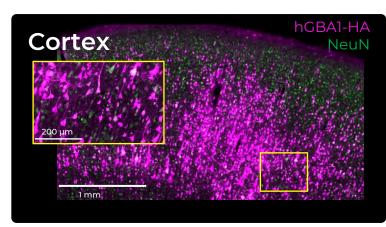


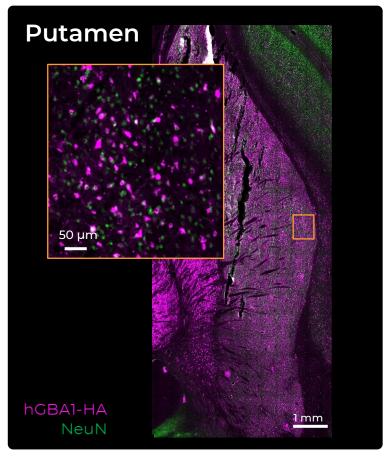
Mouse model correction supports disease-modifying potential of *hGBA1* clinical cargo

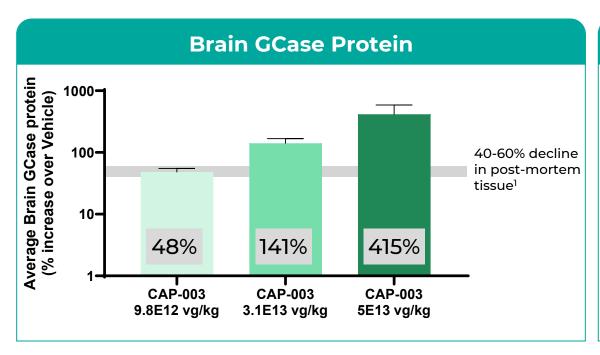

- The disease model exhibits a more severe phenotype (>90% GCase activity reduction, ~6800% GluSph increase) compared to PD-GBA patients (~30% GCase activity reduction¹, ~40% GluSph increase²)
- Delivery of hGBA1 via surrogate capsid results in dose-dependent increases in GCase protein and activity in the brain
- Increased activity coincides with significant decreases in GluSph levels, and reductions in α -synuclein

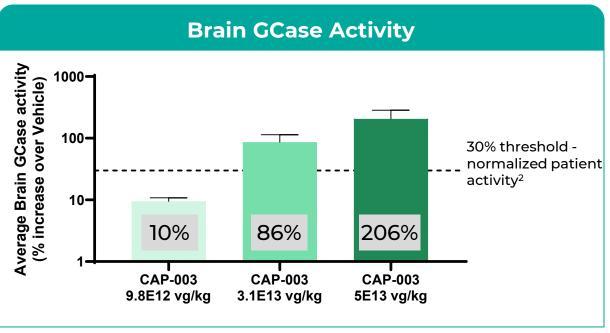

Pharmacology Study In-life: 6 months


Species: Mus musculus (n=10/grp)


EAPSIDA BIOTHERAPEUTICS


IV Dosing Yields Widespread Expression of hGBA1-HA in Relevant NHP Brain Regions, including Substantia Nigra

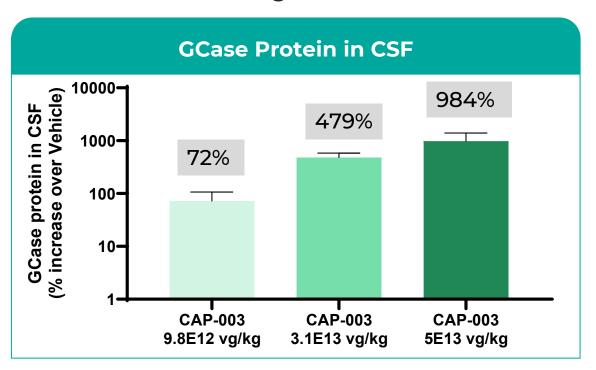


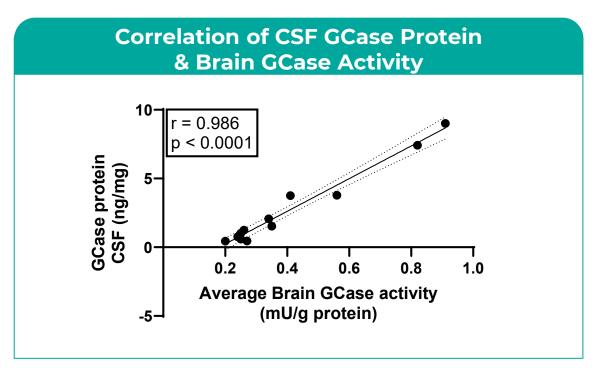


PD-GBA Development Candidate Study Dose: 2.8E13 vg/kg; In-life: 6 weeks Species/Age: Cynomolgus macaques, ~42 mo

CAP-003 maintains significant increased brain GCase protein and activity at 3 months post-dosing in NHP GLP Tox study

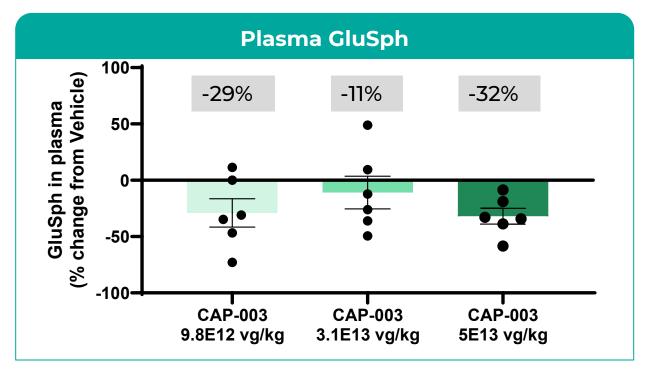
- Administration of CAP-003 resulted in a dose-dependent increases in average brain GCase protein and activity when normalized to the vehicle control (i.e., endogenous GCase levels)
- CAP-003-mediated increases in GCase activity are expected to provide clinically meaningful benefits to PD-GBA patients


In-life: 3 months


Species: Cynomolgus macaques (n=3/grp)

¹ Sanz Munoz et al., 2021; ² Leyns et al., 2023

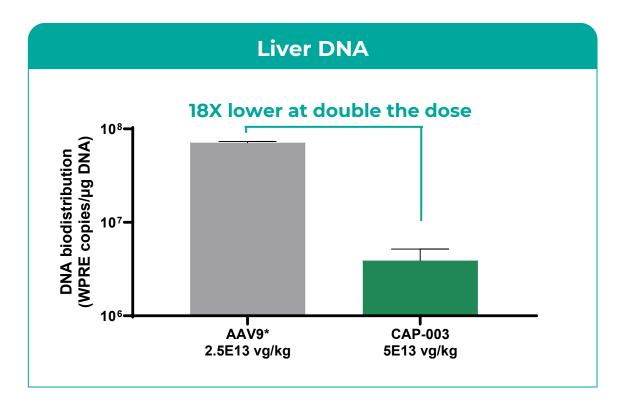
GCase protein levels in CSF serve as best biomarker for GCase activity in the brain

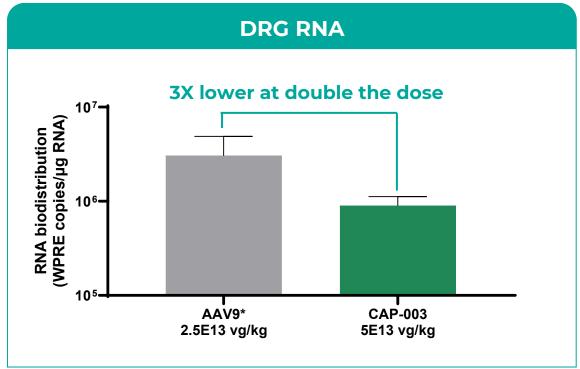

- Administration of CAP-003 resulted in a dose-dependent increase in GCase protein levels in the CSF when normalized to the vehicle control
- Significant positive correlation between CSF GCase protein levels and brain GCase activity

GLP Tox Study In-life: 3 months

Species: Cynomolgus macaques (n=3/grp)

Decreased GluSph levels in plasma confirm target engagement in WT NHPs


- Even in healthy wildtype NHPs, CAP-003 administration shows target engagement via decreases in GluSph levels when normalized to the vehicle control
- In healthy NHPs, GluSph levels are already low in the plasma and undetectable in the CSF; however, these data support the strong target engagement and dose-dependent decrease of GluSph observed in PD-GBA mouse models after *hGBA1* gene supplementation **GLP Tox Study**


In-life: 3 months

Species: Cynomolgus macaques (n=3/grp)

CAP-003 is Substantially Detargeted from Liver and DRGs in NHPs Compared to AAV9

Well-tolerated safety profile with no adverse histopathological findings

GLP Tox Study In-life: 3 months Species: Cynomolgus macaques (n=3/grp)

*Historical IV-delivered AAV9 2.5E13 vg/kg (non-GBA cargo control)

CAP-003 potential as best-in-class gene therapy for PD-GBA

- Capsida's PD-GBA candidate efficiently crosses the blood-brain barrier in NHPs after intravenous injection and achieves breakthrough levels of transduction throughout the brain while significantly de-targeting the liver (>15-fold) compared to AAV9
- GCase enzyme activity is raised significantly (>200% over endogenous levels) in therapeutically relevant areas of the NHP brain, exceeding levels needed to restore GCase function in patients with PD-GBA
- Significant phenotypic correction in a *GBA1* loss-of-function mouse model supports disease-modifying potential of *hGBA1* clinical cargo
- In the GLP Toxicology study, this efficacy was achieved at low to moderate doses that are well tolerated in NHPs without remarkable changes in clinical pathology or immunogenicity, with no adverse histopathology findings across the body, including liver and DRGs
- CAP-003 scales well in suspension manufacturing platform to meet quantity and quality for the clinic
- We have characterized a human receptor that binds our engineered capsids; this receptor has complete homology between humans and macaques in the predicted binding pocket
- Capsida's PD-GBA program is currently on track for IND filing in Q2 2025 and FIH in Q3 2025

Our Pipeline is Making the Impossible Possible

info@capsida.com

1300 Rancho Conejo Blvd Thousand Oaks, California

www.capsida.com