
Unlocking the Potential of Gene Therapy for All

November 2024

Capsida is Solving the Challenges of Gen-1 Gene Therapies

Starting in CNS and Ophthalmology, but with IP rights and applicability to all TAs

Wholly-owned Programs Approaching the Clinic and Strong Pharma Validation

3 Wholly Owned Programs
Approaching Clinical Stage

IV Administered

IND 1H 2025 - Parkinson's caused by GBA mutations (best in class potential)

IND 1H 2025 – STXBP1 Developmental and Epileptic Encephalopathy (first in class)

IND enabling studies– Friedreich's ataxia (best in class potential)

Leadership Team

Decades of industry experience, including drug development and manufacturing expertise

World class investors and scientific advisory teams including co-founder Viviana Gradinaru, PhD

Manufacturing Capabilities

In-house capabilities reduce turn-around times and expedite internal process transfer to support clinical studies

Quickly assess manufacturability

Control the process and associated costs

Partnerships

Key partnerships focused on CNS and Ophthalmology provide validation for the platform

Leadership Team and Board of Directors

Decades of Industry Experience and Drug Development Expertise

Peter Anastasiou **Chief Executive Officer**

Leadership

Nicholas Flytzanis, PhD Founder, Chief Research and Innovation Officer

Caltech

Nick Goeden, PhD Founder, Chief **Technology** Officer

Caltech

Clare Ozawa. PhD

Beth Seidenberg, MD

Board Members

Viviana Gradinaru, PhD

Founder

Julie Hakim Chief Financial Officer

Bethany Mancilla Chief Business Officer

Rob Murphy Chief Manufacturing and Quality Officer

Swati Tole, MD **Chief Medical** Officer

Rita Balice-Gordon. PhD CEO, Muna Tx THE MUNA SANOFI

Chairman, Intellia

aveais

Intelia

MD

Peter Anastasiou Chief Executive Officer

Capsida History and Milestones Achieved

Pipeline for Rare and Common Diseases Across All Ages

Capsida Wholly Owned Programs					
Disease / Target	Cargo	Preclinical IND-Enabling	Phase 1/2 Status		
STXBP1 Developmental and Epileptic Encephalopathy	Gene Supplementation	CAP-002	IND Submission 1H 2025		
Parkinson's disease associated with GBA mutations	Gene Supplementation	CAP-003	IND Submission 1H 2025		
Friedreich's ataxia	Gene Supplementation	CAP-004	IND-Enabling Studies		
Partnered Programs					
Partner	Disease Area	Co-Development/Co-Cor	nmercialization (Co/Co) Option		
abbvie	Neurological & Ophthalmology Disease	one Program, U.S. Profit Sha	One Program, U.S. Profit Share (Neurological)		
Present And	Neurological Diseases	One Program, U.S. Margin Sl	One Program, U.S. Margin Share		
CRISPR	Neurological Disease	CRISPR owned, Capsida Co/	Co Option		

Capsida Platform

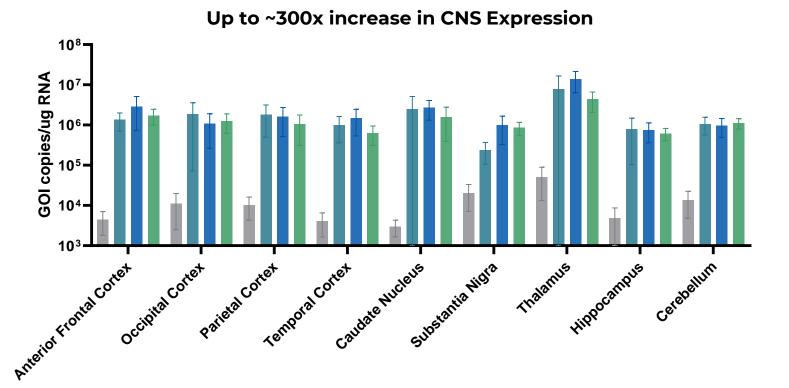
Capsida – Uniquely Positioned to Lead Gene Therapy

Capsid Engineering Scale	CNS Tropism	Peripheral Detargeting
Fully industrialized and		
roboticized platform	>70% neurons transduced	Superior off-target safety profile
Screening capabilities across cell types in NHPs and human cells	Broad IP capsids and capsid/cargo	Broad IP protecting detargeting
	1 7 3	
Therapeutic Expression	Clinical Translatability	Manufacturability
Therapeutic Expression Expression in NHPs with potential for full disease	Clinical Translatability Identified/patented novel human receptor with complete homology	Manufacturability In-house process development and GMP manufacturing
Therapeutic Expression Expression in NHPs with	Clinical Translatability Identified/patented novel human	In-house process development

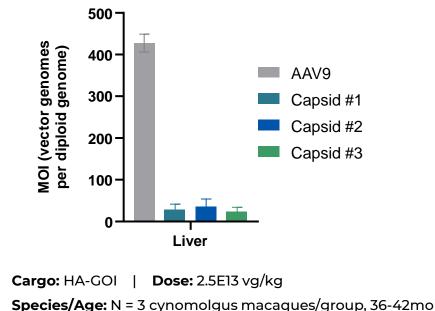
Only Capsida has created all the capabilities and results needed to deliver on the promise of gene therapy

Capsida Has Developed Best-In-Class Platform

Leverages rigorous drug development principles and high-throughput automation to identify capsids that meet Target Capsid Profile (TCP) for each indication

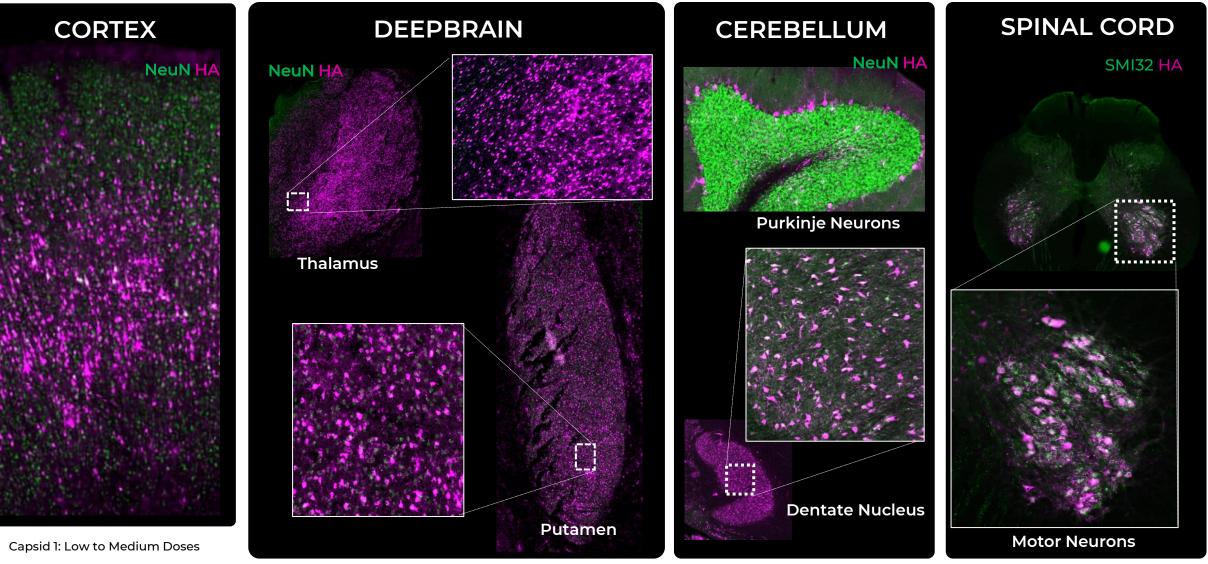


Advance development candidates that meet or exceed TCP for each indication


Lead Capsids Demonstrate High Expression Across the CNS and Significant Liver Detargeting with IV-dosing

Broad CNS Transduction

Liver Detargeting


≥16x decrease in Liver Detargeting

Capsid selected for CAP-002, CAP-003, and CAP-004 exceeds rigorous criteria for all programs

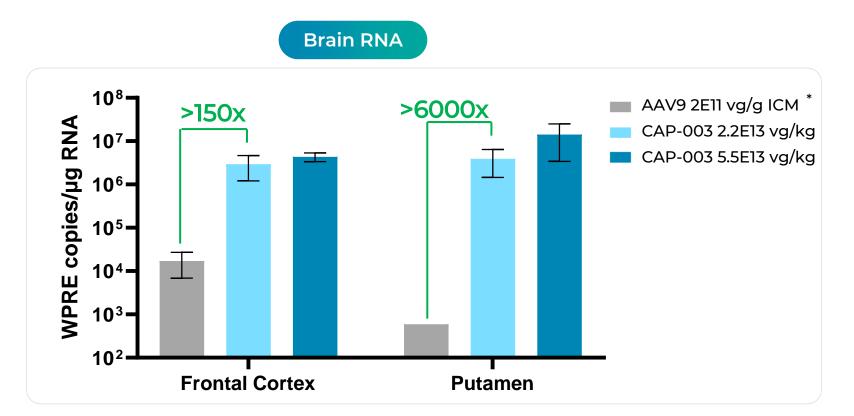
Lead Capsid Results In Widespread Protein Expression Throughout the CNS Following IV Delivery

Significant Detargeting of the Liver and No Histopath Findings, Including in DRGs, After IV Dosing in NHPs

≥16X detargeted to liver compared to AAV9

Lead capsid is **well tolerated** with no clinical pathology or immunogenicity findings

Unremarkable histopathology across the body, including liver and DRGs

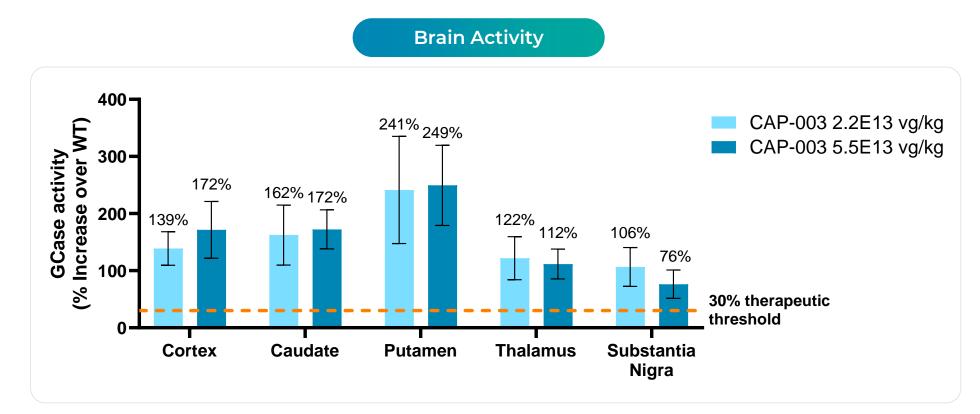

Pipeline Programs

Parkinson's Disease Associated with GBA Mutations

CAP-003 potential to be best-in-class disease modifying therapy

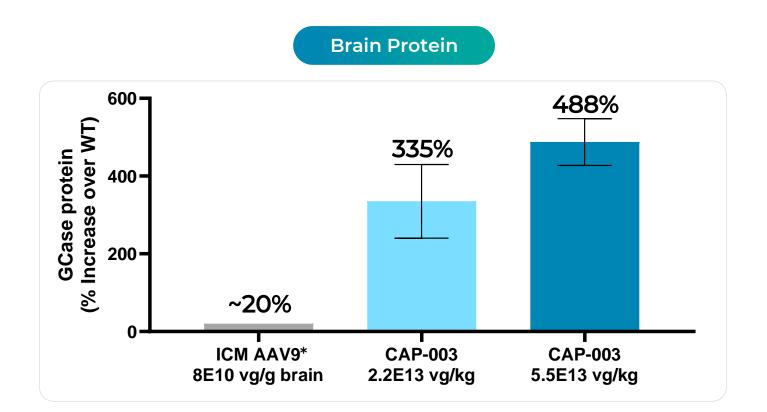
PD-GBA		Limitations of Investigational Thera	apies	CAP-003 Differentiators
Mutations in GBA result in decreased GCase activity (25-30% in symptomatic PD-GBA patients) and lysosomal dysfunction	Transduction	Low neuronal transduc especially in substantia		 Up to 70% of neurons transduced (57% in substantia nigra)
	Expression	Don't report GCase act — haven't seen significan elevations		 GCase activity > levels needed to treat PD-GBA; reach 172% in cortex and 249% in putamen
Up to 15% of PD patients have mutations in the GBA gene ¹	Delivery	Invasive delivery		+ Non-Invasive IV delivery
	Safety	DRG toxicity risks		 No adverse histopathology across the body, including liver and DRGs
 Disease Manifestations PD is second most common neurodegenerative disease Motor Symptoms (e.g., resting tremor, rigidity, slowness of movement) and non-motor symptoms (e.g., cognitive decline, psychiatric) 	therapies Potential for e frequent cogr	ed disease-modifying earlier age of onset, more hitive impairment, more sion vs idiopathic PD ¹		Commercial Opportunity Potential >\$1B Potential to be first IV delivered gene therapy Up to 150K prevalent PD-GBA population in US ² and up to 180K in the EU ³

IV-delivered CAP-003 Achieves Superior Expression Compared to ICM-delivered AAV9 in NHPs



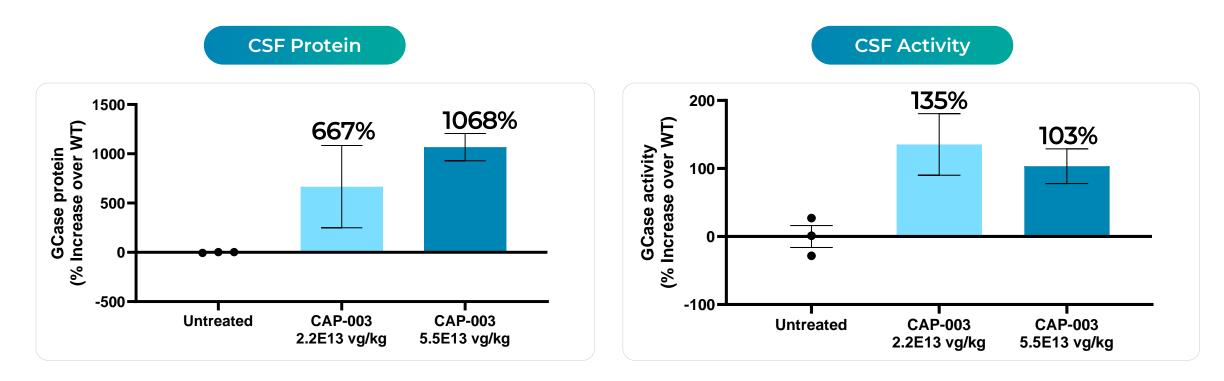
IV-delivered CAP-003 achieves >150-fold higher expression in cortical and >6000-fold in sub-cortical areas compared to ICM-delivered AAV9

*AAV9 ICM data generated from past Capsida study with same expression cassette (promoter, regulatory elements, etc.) but different therapeutic cargo; no protein or %neuron comparison possible


All CAP-003 Doses Exceed 30% Efficacy Threshold for Normalizing GCase Activity in Patients

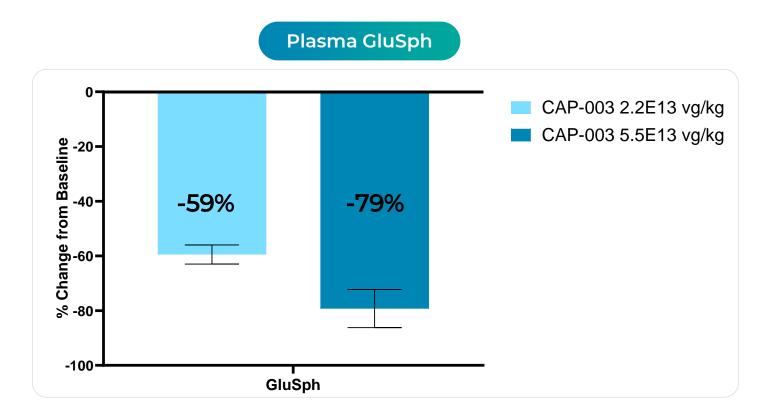
GCase activity, including in Substantial Nigra, was 2-8-fold higher than the threshold needed to overcome the expected deficit in patients

Industry-leading GCase Protein Increases with CAP-003



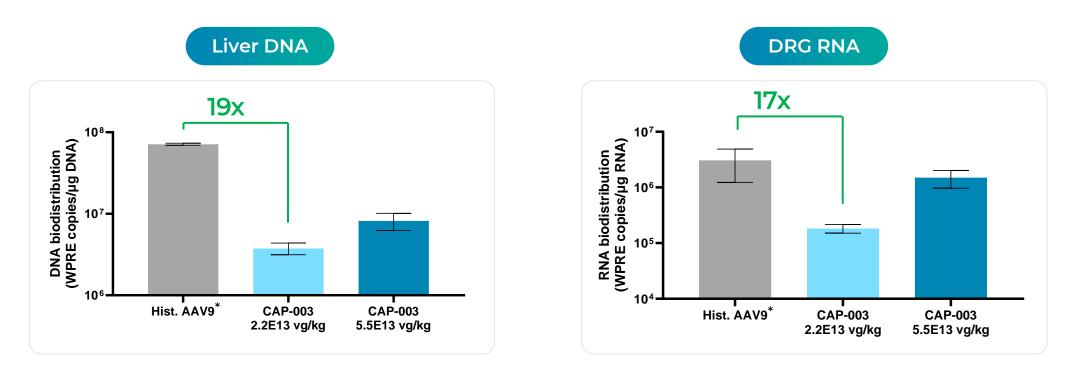
Average GCase protein level increases of IV CAP-003 in NHPs are 8-24x > than ICM AAV9*

*Reported by Prevail (Source: 2019 S1 filing) in their non-clinical NHP studies (~20% increase across cortex, hippocampus, midbrain)


Marked Increases in GCase Protein and Activity in NHP CSF Support Use as Early Target Engagement Biomarkers

- Average GCase activity in the brain shows significant positive correlation with GCase protein levels in the CSF and trend of positive correlation with GCase activity in the CSF
- These data raise confidence in the use of CSF GCase biomarkers in the clinic

Strong Target Engagement in the Key Glycolipid Substrate



GluSph shows decreased levels in the terminal plasma of CAP-003 treated NHPs, providing evidence of lysosomal activity and target engagement

GluSph = Glucosylsphingosine

DNA & RNA Biodistribution to the Liver and DRGs is Significantly Reduced in NHPs Compared to AAV9

- Liver biodistribution is 19-fold lower than AAV9 and results in no adverse histopathology
- Expression in DRGs is 17-fold lower than AAV9 and results in no adverse histopathology

*Historical IV-delivered AAV9 comparison (4-week in-life, non-GBA cargo)

Syntaxin-binding Protein 1 (STXBP1) Developmental and Epileptic Encephalopathy

CAP-002 is first-in-disease and best-in-class disease modifying therapy

STXBP1 Genetic Mutation Autosomal dominant

STXBP1 is expressed in every neuron and is essential for neurotransmitter release

Reduction in STXBP1 levels results in impaired neurotransmission

	Limitations of Investigational Therapies	CAP-002 Differentiators
Transduction	Inability to achieve brain wide neuronal transduction	 Widespread transduction through the brain
Expression	 Insufficient 	 Dose-dependent STXBP1 protein expression throughout the cortex
Delivery	 Invasive delivery 	+ Non-Invasive IV delivery
Safety	 DRG toxicity risks 	 Unremarkable histopathology across the body, including liver and DRGs

Disease Manifestations

Refractory seizures

Developmental delay, cognitive dysfunction, and intellectual disability

Motor abnormalities

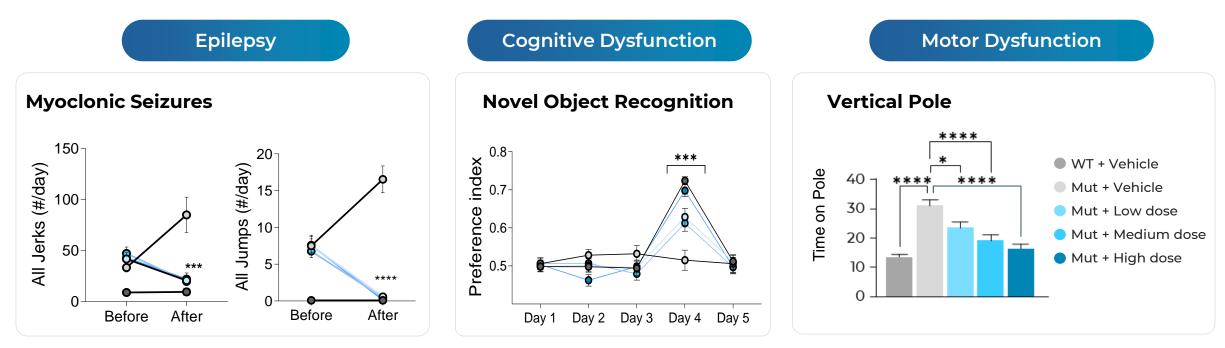
Early mortality

Unmet Need

No approved therapies

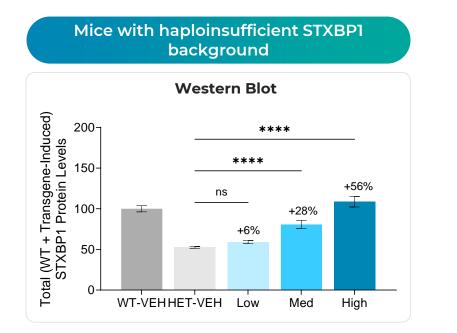
Anti-seizure medications only partially effective

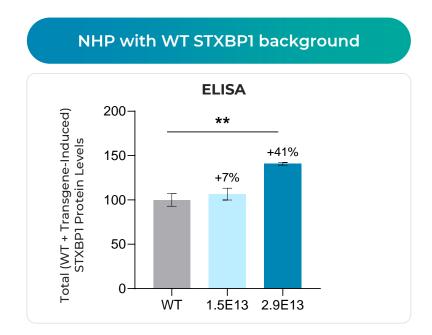
Commercial Opportunity Potential >\$1B


No disease modifying programs in clinical development

Potential to be first-in-class and first-in-disease

1:30,000 live births $^{\rm l}$ (up to 4500 in US and EU) and growing


Brain-wide STXBP1 Expression Enables Dose-dependent Correction of Seizures, Cognitive, and Motor Dysfunction in Mouse Model



Difference from Mut + VEH: * *p* < 0.05, *** *p* < 0.001, **** *p* < 0.0001 Seizures: and Vertical Pole: Kruskal-Wallis Test with Dunn's Multiple Comparisons Test; NOR: 2-way ANOVA with Tukey's Multiple Comparisons Test

- A single IV administration of a surrogate capsid expressing the STXBP1 therapeutic cargo achieves significant phenotypic correction at all doses
- Reversal of symptoms in mature mice demonstrates potential for phenotypic correction
- Correction is long-lasting to >1-year post-dosing with no histopathology findings

CAP-002 Achieves Significant STXBP1 Increases Throughout NHP Brain Following IV Delivery

CAP-002 achieves dose-dependent STXBP1 expression in NHPs that correlates with correction of epilepsy, cognitive, and motor phenotypes in mice

Friedreich's Ataxia (FA)

CAP-004 potential to be best-in-class disease modifying therapy

Friedreich's Ataxia (FA) Autosomal recessive		Limitations of Investigational Therapies	CAP-004 Differentiators
Trinucleotide repeat expansion disorder that results in reduction in frataxin (FXN) protein, leading to death of highly active cells that are dependent on ATP production, mainly cardiomyocytes and neurons	Transduction	No therapies target CNS, — cardiac, and sensory manifestations	 Substantial transduction across key cell types in CNS, cardiac, and sensory regions
	Expression	Insufficient across key tissues affected by FA	 Therapeutically meaningful FXN expression expected to achieve full correction
	Delivery	— Invasive delivery to CNS	 Non-Invasive IV delivery
	Safety	— Liver toxicity	No adverse histopathology across the body, including liver and other non-target tissues

Disease Manifestations

Instability / Falls

Hypertrophic Cardiomyopathy

Ataxia

Sensory impairment

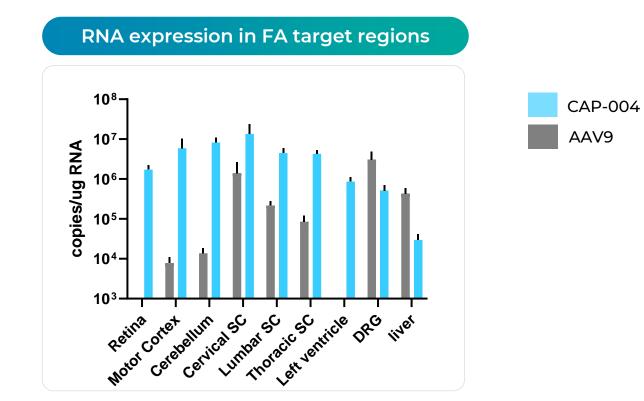
Average lifespan is ~37 years old

XX **Unmet Need**

Limited treatment options and no approved gene therapies

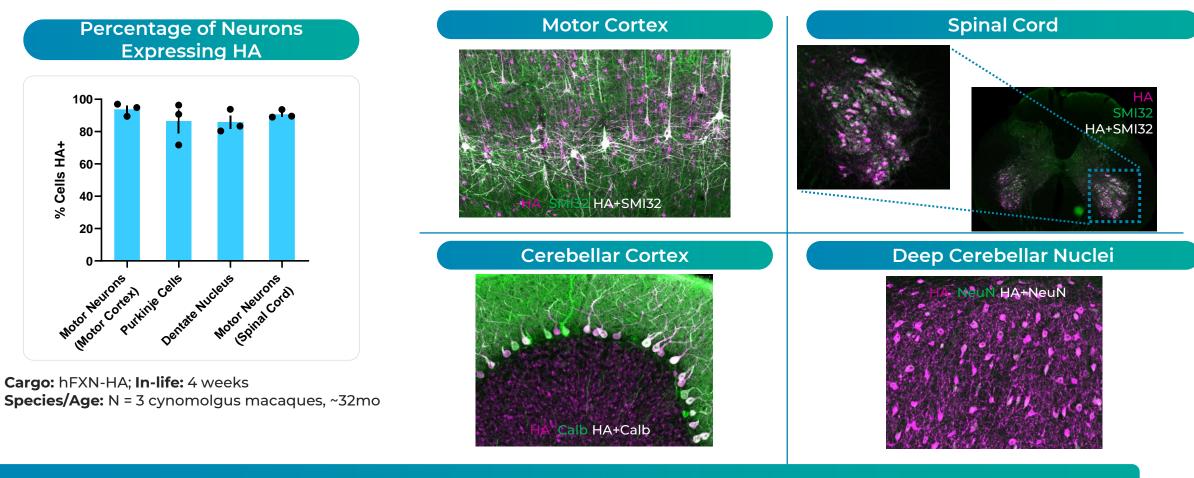
No therapies address all manifestations

Several investigational gene therapies only focus on cardiomyopathy


Commercial Opportunity Potential >\$1B

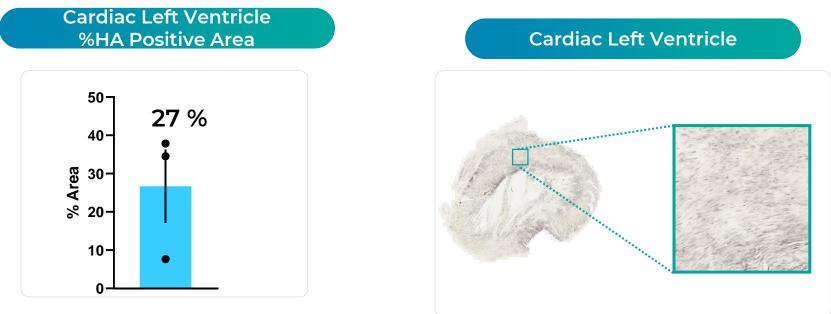
Potential to be first-in-class single IV infusion to treat CNS, cardiac and sensory manifestations

~5,000 cases in the US¹ and 15,000 worldwide¹



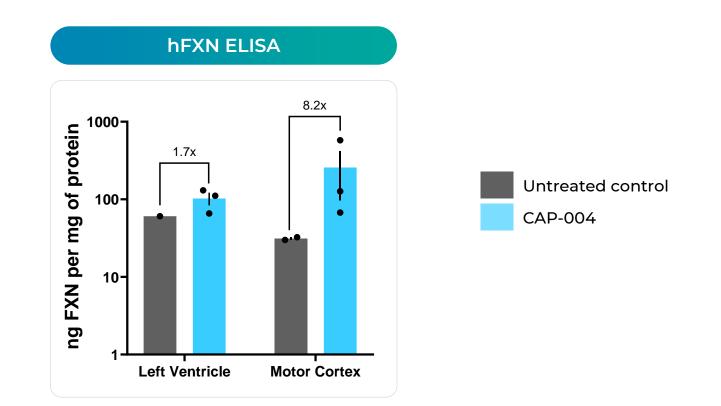
IV CAP-004 Achieves Meaningful Transduction of CNS, Cardiac, and Sensory Tissue with ~10x Liver De-targeting vs. AAV9 in NHPs

- CAP-004 at a low to moderate dose results in >100-fold higher expression compared to AAV9 across key areas of interest in the CNS
- Meaningful RNA expression in the retina suggests a potential in treating sensory vision loss


CAP-004 Drives FXN-HA Protein Expression Across Cell Types that are Central to FA Symptoms and Pathology

Single IV administration of CAP-004 in NHPs demonstrates potential for complete correction across all CNS target tissues

CAP-004 Cardiac Transduction Reaches ~30% Coverage in the Left Ventricle in NHPs



Cargo: hFXN-HA; In-life: 4 weeks Species/Age: N = 3 cynomolgus macaques, ~32mo

CAP-004 administration results in substantial transduction of cardiac tissue

CAP-004 Treated NHPs Shows Robust FXN Expression in Cerebral Cortex and Cardiac Tissue

IV administered CAP-004 results in 8-fold increase in FXN protein expression in the CNS and 1.7-fold increase in cardiac tissue

Manufacturing

Integrated Process & Analytical Development and cGMP Capabilities

In house capabilities reduce turn-around times and expedite process transfer to support clinical studies

Vector Production

Rapid production of engineered capsids for preclinical studies

Process & Analytical Development

Manufacturing

Conduct manufacturability assessment in HEK293 suspension process

Up to 50 L bioreactor scale

Develop and optimize key analytical assays

15,000 ft² cGMP Manufacturing Facility

Leverages single use systems

Up to 200L bioreactor scale

Finish – fill operations

Unidirectional flow

In-house QC capabilities for product release

Modular clean rooms

Excellent yields and quality specifications at or above FDA standards

cGMP

Capsida Summary

Wholly-owned Programs Approaching the Clinic and Strong Pharma Validation

3 Wholly Owned Programs
Approaching Clinical Stage

IV Administered

IND 1H 2025 - Parkinson's caused by GBA mutations (best in class potential)

IND 1H 2025 – STXBP1 Developmental and Epileptic Encephalopathy (first in class)

IND enabling studies– Friedreich's ataxia (best in class potential)

Leadership Team

Decades of industry experience, including drug development and manufacturing expertise

World class investors and scientific advisory teams including co-founder Viviana Gradinaru, PhD

Manufacturing Capabilities

In-house capabilities reduce turn-around times and expedite internal process transfer to support clinical studies

Quickly assess manufacturability

Control the process and associated costs

Partnerships

Key partnerships focused on CNS and Ophthalmology provide validation for the platform

Our Pipeline is Making the Impossible Possible

🖂 info@capsida.com

1300 Rancho Conejo Blvd Thousand Oaks, California

www.capsida.com